Asymptotic expansion for the solution of a penalized control constrained semilinear elliptic problems

نویسندگان

  • J. Frédéric Bonnans
  • Francisco J. Silva
چکیده

In this work we consider the optimal control problem of a semilinear elliptic PDE with a Dirichlet boundary condition, where the control variable is distributed over the domain and is constrained to be nonnegative. The approach is to consider an associated family of penalized problems, parametrized by ε > 0, whose solutions define a central path converging to the solution of the original problem. Our aim is to obtain an asymptotic expansion for the solutions of the penalized problems around the solution of the original problem. This approach allows us to obtain some specific error bounds in various norms and for a general class of barrier functions. In this manner, we generalize the results of [2] which were obtained in the ODE framework. Key-words: Optimal control of PDE, interior-point algorithms, control constraints, expansion of solutions. ∗ INRIA-Saclay and CMAP, École Polytechnique, 91128 Palaiseau, France ([email protected]) † INRIA-Saclay and CMAP, École Polytechnique, 91128 Palaiseau, France ([email protected]) Développement asymptotique de la solution d’un problème de commande optimale semi linéaire elliptique pénalisé Résumé : Dans ce travail nous considérons le problème de commande optimale d’une équation semi linéaire elliptique avec conditions de Dirichlet homogène au bord, la commande étant distribuée sur le domaine et positive. L’approche est de considérer une famille de problèmes pénalisés par ε > 0, dont la solution définit une trajectoire centrale qui converge vers la solution du problème original. Notre but est d’obtenir un développement asymptotique de la solution du problème pénalisé au voisinege de la solution du problème original. Notre approche nous permet d’obtenir des estimations d’erreur dans différentes normes et pour une classe générale de fonctions barrière. Ceci étend les résultats de [2], obtenus dans un cadre de commande optimale d’équations différentielles. Mots-clés : Commande optimale des EDP, algorithmes de points intérieurs, contraintes sur la commande, d’eveloppement des solutions. Asymptotic expansions for interior solutions of semilinear elliptic problems 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Principle for State - Constrained Optimal

In this paper, the authors study an optimal control problem for quasilinear elliptic PDEs with pointwise state constraints. Weak and strong optimality conditions of Pontryagin maximum principle type are derived. In proving these results, we penalized the state constraints and respectively use the Ekeland variational principle and an exact penalization method. In this paper, our aim is to prove ...

متن کامل

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Topological Derivatives for Semilinear Elliptic Equations

1.1. Topological derivatives in shape optimization. Topological derivatives are introduced for linear problems in (Sokolowski and Zochowski, 1999) and for variational inequalities in (Sokolowski and Zochowski, 2005). The mathematical theory of asymptotic analysis is applied in (Nazarov and Sokolowski, 2003; 2006) for the derivation of topological derivatives in shape optimization of elliptic bo...

متن کامل

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

Local Solvability and Regularity Results for a Class of Semilinear Elliptic Problems in Nonsmooth Domains

We consider a class of semilinear elliptic problems in twoand three-dimensional domains with conical points. We introduce Sobolev spaces with detached asymptotics generated by the asymptotical behaviour of solutions of corresponding linearized problems near conical boundary points. We show that the corresponding nonlinear operator acting between these spaces is Fréchet differentiable. Applying ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009